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Alterations in brain monoamine neurotransmitter release
at high pressure

S.C. Gilman, J.S. Colton, and A.J. Dutka
Diung Medicine )epartment. Naval Medical Research Institute. Bethesda. MD 20814-5055. USA

Summary. High pressure exposure produces neu- Ricaurte et al. 1985: Vaernes et al. 1983). The dis-
rological changes which manifest as tremors, EEG order is progressive and appears in several stages.
changes and convulsions. Since previous studies Initial manifestations are in the form of neuromus-
have implicated the involvement of the monoamin- cular tremors succeeded by EEG changes, myoc-
ergic system in these symptoms, it was of interest lonus and finally convulsions (Hunter and Bennett
to study monoamine release at high pressure. Syn- 1974).
aptosomes isolated from guinea pig brain were A possible role of the brain monoamines (i.e.,
used to follow monoamine efflux at 68 A FA. The serotonin, dopamine, and norepinephrine) in the
major observation was a decrease in the initial cal- development of HPNS has been speculated for
cium dependent release of all three monoamines some time. Brauer et al. (1978) first showed that
in resnonse to K + induced depolarization. This reserpine, a monoamine depleting alkaloid, accen-
response is similar to that previously observed for tuated pressure-induced convulsions in mice. The
GABA, glycine and glutamate. This generalized reserpine effect could be partially reversed by the
pressure induced depression of initial transmitter administration of a monoanine precursor or a
release suggests a mechanism common to the re- monoamine oxidase inhibitor. Subsequently, Kob-
lease process for both excitatory and inhibitory lin et al. (1980) found that FLA-63. a dopamine-fl-
neurotransmission. hydroxylase inhibitor that depletes brain norepi-

Key words: Neurotransmitter -High pressure ner- nephrine, caused a significant reduction in the pres-
sure at which tremors and convulsions occurred.vous syndrome Synaptosome Monoamine In a later study, Bowser-Riley et al. (1982) investi-Pressure gated the monoamine and high pressure interac-

tion using neurotoxins that cause physical destruc-
tion of monoaminergic neurons. They found that
those agents which depleted norepinephrine also

Introduction consistently lowered the HPNS threshold level. In

High hydrostatic pressure is the etiologic factor contrast, the depletion of brain serotonin was

underlying nervous system changes referred to as found to have no effect on the HPNS pressure

the high pressure nervous syndrome (HPNS). threshold. These findings led Bowser-Riley (1984)

HPNS is observed when human divers and experi- to conclude that, of the monoamines, only norepi-

mental animals are exposed to pressures greater nephrine is associated with pressure-induced ence-

than 27 atmospheres absolute (ATA). The symp- phalopathy. On the other hand, some investigators

toms of HPNS resemble to varying degrees other feel that the hyperexcitability associated with pres-

neurological dysfunctions such as the metabolic sure exposure results from a general imbalance of

encephalopathies. Parkinson's Syndrome, MPTP the three monoamine neurotransmitter systems
toxicity. or reaction to the street drug "Ecstacy' (Koblin et al. 1980). Therefore, the present study(Barnes 1988: Bennett and McLeod 1984: Hallen- was designed to characterize the effects of pressurebeck 1981 Hiekkila 1988; Langston et al. 1983" on the release of [3Hjserotonin, [3H]dopamine.

and [3H]norepinephrine from presynaptic nerve
0//print requ'sts to: S.C (jilman (address see above) terminals isolated from guinea pig brain.
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The presynaptic vesicle (synaptosome) prepara- as measured with a paramagnetic 0. anal%/cr % ts maintained

tion was selected because it retains the transport at 0.49+0.1 ATA. A recirculation atmosphere control sxslem
properties of the pre-synaptic nerve ending in situ, was used to regulate (O, at <0.0005 ATA. as measured h%

an infrared analer.
responding to depolarization with a release of neu- During compression. the filter was %%ashed continuousl]
rotransmitters (Blaustein et al. 1977: Cotman et al. with buffer medium. On reaching 68 ATA. the speed of the
1976: Debelleroche and Bradford 1973). Synapto- peristaltic pump was adjusted to perfuse the Filters at a rate

somes also offer an advantage for studying neu- of 500 pl min with buffer medium. Three -Awash" perl'usates
w~ere then collected directly into scintillation \ials. At 3 minrotransmitter release since multi-neuronal or neu- after the beginning of superfusion. the hulfer medium sas

ro-glial interactions can be eliminated. quickly substituted with at nondcpolariting (5 mM K "). or a

depolarizing (55 mM K ' I "',,:ffIux" buffer medium. The compo-
sition \Aas (in mM): NaCI. 145 or 95: KCI. 5 or 55: CaCI.

Material and methods 1.2: Mg(C'I. 2.5: KHAP( 4 . 1.2: HI-PES. 20: glucosC. 10:
pH 7.4. Nine fractions containing 500 pIl each of perfusate wcre

4ninaolx collected every minute directly into scintillation \ials.
)uring the release studies, the temperature of the buffer

Adult male Hartley guinea pigs (300 400 g) (Charles Rivers media and perfusion chamber was constantly monitored by mi-
Breeding Lab, Willingtn. MA) were housed at the Laboratory crothermistors and constantly maintained at 370 C± 0.050 C us-
Animal Facility. Naval Medical Research Institute, under a 12 h ing YSI model 73A temperature control units. At the end of
dark cycle with food and water provide ad libitum. the release studies the hyperbaric chamber was decompressed

to I ATA at the rate of 4.03 ATA min. Aliquots from the same
synaptosome preparation were used for obtaining the I ATA

Material and 68 ATA release values for all experiments. The control
preparations were handled in a manner similar to the experi-

Radioactive [ 3H]serotonin [( 31T )-5-hydroxytryptaminc creati- mental group. except that pressure exposures were in air at
nine sulfate: 15 301i mmoll, [l1t]dopamine (specific activi- I ATA.
ty= 20 40 i mmol), and 1 -[3 1]norepinephrine (5 15 Ci Fifteen ml of Biofluor was added to each scintillation ,ial
mmol) were purchased from New England Nuclear Corpora- and radioacti\ ity determined for each perfusate. The radioacti\-
tion (Boston, MA). All other chemicals were purchased from ity remaining on the filters at the end of the superfusion tas

ongm thica Colters att theis enMfOh sprfs.t aSigma Chemical Company (St. Louis. MO). also counted. Each filler was placed in a scintillation vial con-

taining 500 pI of I sodium dodecylsulfate. After agitation.
15 ml of Bi,,ll,,r w" added and the filter counted for radioac-

Method tivity.

Guinea pigs were decapitated and the brain rostra) to the cere- Fractional efllux was expressed as percentage of total ra-

bellum placed in ice-cold 0.32 M sucrose buffered with H EPES. dioactivity, where total radioactivity was the sum of'all fraction-

Synaptosomes were prepared by a previously described tech- al filtrate and radioactivity remaining on the filter. Data were

nique (Gilman et al. 1986a). analyzed by ANOVA and P<0.05 was considered statistically

The method used for radioactive monoamine loading of significant.

the synaptosomes was similar to that previously described (Rut-
ledge 1987: Steele et al. 1987). The final synaptosome pellet
was suspended in 10 volumes of buffer medium. The composi- Results
lion was (in mM): NaCI. 145: KCI, 5; CaCI 2, 1.2: Mg( 12,
2.5: KHPo,. 1.2: HEPES, 20: glucose, 10: pargyline, 0.01; The time course of depolarization-induced efflux
ptt 7.4. Aliquots (I ml) of the synaptosomal preparation con-
taining 3.0 3.5 mg ml protein were incubated for Is mm Of [3H]serotonin from synaptosome fractions iso-
370 C, and then the radio-labeled monoamine (1 pCi) added lated from the brain is shown in Fig. 1. Application
and incubation continued for 25 min to allow uptake by the of the high K medium containing Ca 2  initially
tissue, induced a four-fold increase in the release of

[3ti]scrotonin by the synaptosome preparation.
('ompre.mionstudies After the first 2- 3 min, however, this evoked re-

Following uptake, a I ml aliquot of the radioisotope-loaded lease rapidly declined, returning within 8 mi to
synaptosomc suspension was transferred to a filter unit consist- the resting effiux levels.
ing of a 0.45 p nylon membrane filter positioned on a multiper- Synaptosomes were also perfused with a depo-
forated support of a 10-ml perfusion chamber. The perfusion larizing (55 mM K '). calcium-free medium, with
chamber was then connected to a peristaltic pump and the MgCI2 replacing the omitted CaCI2 , to study the
filters immediately washed with 25 ml of buffer medium using
the highest pump speed. effect of calcium removal on depolarization-in-

After washing. the filter unit and supcrfusion apparatus duced [3H]serotonin release. The removal of calci-
were placed in a hyperbaric chamber (model 18361. Bethlehem. um from the depolarizing medium essentially elimi-
Hcllcrtown, PA). Ten milliliters of buffer medium were poured nated the four- to five-fold increase in serotonin
directly over the Filter and the hyperbaric chamber was flushed release evoked by high K + (Fig. 1). Qualitatively
with 100% oxygen for I min, pressurized to 1.3 ATA with oxy-
gen. and then to a final depth of 68 ATA with helium, at a similar responses were obtained for dopamine and
compression rate of 4.03 ATAmin. Oxygen partial pressure norepinephrine (figures not shown).
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It1. I. Release of 3 H]serotonin from guinea pig brain synapto- B n 4
some fractions. (A). depolarized. Ca 2 present, (0). depolar-
ied. Ca2' absent, (0i. non-depolarized. Ca_' present. After 4,
pre-loading with [3 tljscrotonin, synaptosome aliquots were W
superfused with a high sodium, calcium-free buffer medium W
for 3 min, then 55 mM K '-containing medium with or without W
Ca 2 * or 5 mM K ' -containing medium with Ca 2 * was similarly z
superfused for the 9 min marked by horizontal bar (i.e., 3
12 min). Each point represents mean + SEM of six experiments 0CL 2-i
for each condition U

.K

Pressurization of the synaptosome preparation
to 68 ATA did not cause any significant change 0 .-'------- ,-I
(p>0.05) in the resting, non-depolarized efflux of 0 1 2 3 4 5 6 f 8 9 10 11 12 13

serotonin, dopamine, or norepinephrine by these
pre-synaptic nerve terminals. However, the total c n 4
evoked release (i.e.. both calcium-dependent and 6 *P'-0.05

calcium-independent) of either [3 H]serotonin,
[3H]dopamine. or [3 H]norepinephrine from synap- < *

tosomes in the presence of 1.2 mM Ca 2" was sup- a i
pressed by compression to 68 ATA (Figs. 2A, 3 A i24j
and 4A). Data analysis showed that the depression -
in release of all 3 monoamines were significant (p > \o\3j
0.05) at the first minute after potassium depolar- 2
ization. The release of the three monoamines in - ---

the absence of Ca2  on the other hand, was little
affected by compression (p > 0.05) (Figs. 2 B, 3 B,
4B for [3 H]serotonin. The difference in release be- T_ - - I - T I
tween the Ca 2 

+ containing and Ca2 " free media, 0 3 4 5 6 7 8 9 10 11 12 13

which is the calcium-dependent component of re- Fig. 2A-C. Effect of compression to 68 ATA on the high K -

lease, is similar to the total release profile since evoked release of [3Hiscrotonin from synaptosomes. A In the
the calcium-independent component was negligible presence of Ca 2 ' : B in the absence of Ca 2 , X Ca 2 ' -dependent
(Figs. 2C, 3C, 4C). Statistical comparison between release, i.e., the difference between A and B: (A). I ATA: (o).

the I ATA control calcium-dependent data and the 68 ATA

68 ATA calcium-dependent data indicates that re-
lease of the [3H]serotonin and [3 H]norepinephrine only during the first minute of pressure exposure.
during the first two minutes after potassium depo- This indicates that compression is selectively de-
larization is significantly lower at high pressure pressing the initial depolarization-induced calci-
than in corresponding control values (p<0.05). um-dependent release of the [3 H]monoamines by
Dopamine release, on the other hand, was reduced synaptosomes isolated from the CNS.
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McLeod 1984, Hallenbeck 1981 Vaernes et al. transmitter release. Since A23187 forms a mem-
1983). As previously mentioned, reserpine pretreat- brane-bound calcium - hydrogen ion exchange
ment in mice produces a significant decrease in carrier, the endogenous membrane calcium chan-
brain serotonin, dop:,,min. and norepinephrine, nel should be bypassed. Thus, calcium entry into
and is associated with a fall in tremor threshold the terminal should occur independently of the en-
when these animals are exposed to high pressure dogenous calcium channel. The A23187 results,
(Koblin et al. 1980). These observations suggest therefore, lead us to suspect a pressure-induced
that depression of monoaminergic pathways may modification of components in the release subse-
contribute to the outward clinical signs of high quent to calcium entry. However, it is currently
pressure exposure. unknown which component(s) is(are) involved.

The major observation i: this study was a sig- Further support for this supposition is provided
nificant suppression in the initial (i.e., the first 1 by the studies of Heinemann et al. 1987. These in-
or 2 min) efflux of the three monoamines (viz. sero- vestigators observed that Ca 2 currents in patch-
tonin. dopamine, and norepinephrine) from depo- clamped chromaffin cells were independent of
larized brain synaptosomes after compression to pressures up to 400 atm and that the iclease rro-
68 ATA. This suppression of stimulated release co- cess was slowed down while a decrease in mcn.
incides with decreases previously noted in the calci- brane capacitance was noted. This suggests that
um-dependent release for GABA, glycine, and glu- pressure affects neurotransmitter release at some
tamate after pressurization to 68 ATA (Gilman point other than the calcium ion channel.
et al. 1986b; Gilman et al. 1987). Thus, the effect The depression of the early phase of transmitter
of high pressure on potassium-stimulated. calcium- release from nerve terminals in response to high
dependent transmitter efflux in perfused synapto- pressure in the whole brain would have profound
somes, appears to produce a generalied retarda- effects on information processing, timing, and mo-
tion in the initial release of all the transmitter sub- dulatory action in motor, sensory, and behavioral
stances mentioned above, pathways. However, it is uiknown whether there

Since there appears to be a generalized pres- is actually an analogous pressure-related depres-
sure-induced inhibition of initial transmitter re- sion of depolarization-induced. calcium-dependent
lease from potassium depolarized synaptosomes. release of serotonin, dopamine, or norepinephrine
it is reasonable to suspect a common factor affect- in the whole, intact brain. It is also unknown if
ing the mechanism of release for most (if not all) this phenomenon is actually a contributory factor
calcium-dependent neurotransmitters. It is not in the development of the outward symptomato-
clear whether release is being depressed as a conse- logy of HPNS. On the other hand, such a depres-
quence of an impairment of calcium entry into the sion could contribute to the motor and behavioral
nerve terminal or as the result of an interruption changes associated with high pressure exposure.
of some other aspect of the calcium-dependent cas-
cade that couples stimulation with release (e.g., cal- Acknowiledgenents. The authors give special thanks to Jeff rey

cium-calmodulin binding, membrane phosphoryla- Boogaard for valuable technical support. The authors also
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depressed at 68 ATA (Gilman et al. 1986a). This

finding strengthens the supposition that high pres-
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